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Potential Impacts of
Climate Change on Crops

POTENTIAL CHANGE IN GRAIN YIELD ”...dOUbling Of the atmOSpheriC
330 ppm EISS 2XCOZ S carbon dioxide concentrations of
BTl crops will lead to only a small
decrease in global crop productions.
But developing countries are likely
to bear the brunt of the problem...”
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Synthesis for the last IPCC report
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Review: climate change and food security

GISS 2XCOp, 555 ppm
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With and without CO,?

Percentage change in yields between present and 2050
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Climate Change
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With or without CO,?

Rosenzweig & Parry, 1994

Climate Change
with CO, effects

World Development report,2010

Percentage change in yields between present and 2050

-50 -20 0 20 50 100

Wheeler, 2013 i




What do we know
about these CO, effects on crops?

A doubling of atm. CO, concentrations:
* Increases yield of:

C, crops by ~10-45% (mainly due
to photosynthesis enhancement)

stress reduction)

 Reduces crop water use
(transpiration) by ~ 10%
 Reduces crop quality (lower nutrients
content (zinc, aluminium); unbalance

C-N ratio leads to lower protein
content



Crop Responses to elevated [CO,]

* Evapotranspiration of both C; and C, plants decrease by about 10% on average
* Corresponding yields of most C; grain crops increase on average by about 19%

* Yields of C, crops increase only when water is limiting, as in this case [CO,]
stimulate crop growth via improved water conservation
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Carbon Assimilation 101




Location of Experimental Sites
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Current Opinion in Plant Biology

- Mostly located in the northern hemisphere (USA, Japan, Germany)

—> Little knowledge of spatial variations in the global impacts

- Focus on important crops (wheat, rice, soybean...) rather than less common
ones (eg millet, cassava, coffee)



Free-Air CO, enrichment (FACE)

AgFACE, Australia



New study ...
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Regional disparities in the beneficial effects of
rising CO, concentrations on crop
water productivity

Delphine Deryng"?3*, Joshua Elliott"?, Christian Folberth*>, Christoph Miiller®,
Thomas A. M. Pugh’8, Kenneth J. Boote®, Declan Conway'®, Alex C. Ruane'?, Dieter Gerten®'?,
James W. Jones®, Nikolay Khabarov®, Stefan Olin'3, Sibyll Schaphoff®, Erwin Schmid'¥, Hong Yang*

and Cynthia Rosenzweig'"?

Multi-model assessment of the impacts of climate change on crop yield and ET
Comprehensive model/observation comparison in respects to CO, effects
Global analysis of the spatial variations in the CO, effects on crops

Attribution of model uncertainties
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Multi-model Assessment

6 Global Griddec

Crop Models (GGCMs):

ODSSAT

EPIC
Site-based
GEPIC

PEGASUS

LPJmL
LPJ-GUESS |

* Driven by 5 Global Climate Models (GCMs)
HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2-M, NorESM1-M

* under RCP 8.5 (Climate+CO, effects)

e Simulated crop yield, evapotranspiration, and more...

Maize

C, photosynthesis

Wheat

C; photosynthesis

Rice

C, photosynthesis

Soybean

C; photosynthesis, N-fixing legume




Projected Impacts on Crop Yields

Simulated change in crop yields in 2080 relative to 2000 under RCP 8.5
CO, concentrations double relative to present-day
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Global water use

Industries
20%

Total water withdrawal: 3700 km?3/yr
Agriculture water withdrawal: 2590 km3/yr
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Water availability and scarcity

[ Little or no water scarcity ] Approaching physical water scarcity ] Not estimated

] Physical water scarcity B Economic water scarcity

IWMI, 2007



Can elevated atmospheric [CO,]
contribute to produce
more food with less water?

* Crop Water Productivity

* CWP is the ratio of crop yield to total
water use throughout the crop

development period (AET) /////////

* CWP =Yield/AET

AET=actual evapotranspiration



Location of FACE where data on both
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Current Opinion in Plant Biology

- Wheat in two sites (Arizona, USA & SE Australia)
- Maize in Germany

— Rice in two sites (Japan & China)

— Soybean in lllinois, USA



Model/Observation Comparison

A median FACE wet 8 GGCMs irrigated
: A median FACE dry @ GGCMs rainfed
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Global Impacts

Wheat (C; crop) Climate change Climate change
with CO, effects  without CO, effects
Yield +3 [-1;+14] % -23 [-28;-15] %
Evapotranspiration -11 [-21;-6] % -7 [-12;-5] %
Crop water productivity +27 [7;37] % -17 [-24;-1] %
Maize (C, crop) Climate change Climate change
with CO, effects  without CO, effects
Yield -9 [-16;+1] % -21[-28;-13] %
Evapotranspiration -17 [-24;-5] % -8 [-13;-2] %

Crop water productivity +13 [3;22] % -13 [-22;-2] %




Spatial variations: CO, effects on yield (rainfed)

[CO,] levels correspond to year 2050
under a business as usual greenhouse gases emission scenario
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Spatial variations: CO, effects on CWP (rainfed)
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Summary across climatic regions
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Large benefits in arid regions (CWP increases by 48% for rainfed wheat)



Wheat CO, effects on CWP
[CO,] levels correspond to year 2050 under RCP 8.5 - median across 5 GCMs




Large uncertainties
in impact model projections

6 different crop models driven by climate
data from 5 different climate models:
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Wheat
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Uncertainties double

when including CO, effects




Share of total variance (%)

Source of Uncertainties
In Impacts Projections
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Crop simulation
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(parameterization, ET
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extreme heat sensitivity,
phenology & planting date
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(Radiation Use Efficiency vs
Photosynthesis-Respiration)



Climate Adaptation Strategies

* Increase fertilizer application — CO, effects are
stronger for well-fertilizer crops

* Elevated CO, could reduce irrigation demand (in
some cases)

* Elevated CO, could help rainfed crops to cop with
water stress

— Choice of crop type (switch to a less water
demanding crop)

e Crop genetics (develop cultivars adapted to high
CO, levels



Role of CO, in GCMs & EMIC
Carbon Cycle—Climate Feedbacks
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Increases in CO, and temperature have opposite effects on the carbon
sink: increases in atmospheric carbon dioxide stimulate photosynthetic
uptake of CO, in a “CO, fertilization” effect that dampens anthropogenic-
induced increases in atmospherlc CO,, and increases terrestrial carbon
storage by 1.35 Gt-C/ppm increase in atmospheric CO, (Bonan, 2008)



Feedback processes contributing
to radiative forcings

Process

C cycle: CO, fertilization
C cycle: climate

C cycle: N limit to CO, fertilization

C cycle: N mineralization reducing
climate feedback

Permafrost and C in peatlands
CH,

O, phytotoxicity

Oj: variable BVOC-to-NO, ratio

Fire

Total

Feedbacks associated with human-mediated changes in the biosphere (W m™ K™)

VL

VL

VL

VL
VL
VL
VL

VL

Level of scientific
understanding

Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to
reach up to 0.9 or 1.5 W m-2 K-1 towards the end of the twenty-first century, depending on the extent to which interactions with
the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling
effect owing to carbon dioxide fertilization of the terrestrial biota. (Arneth et al., 2010)



Next steps

* Expand FACE experience and develop
collaboration between agronomists and crop

modelers AQ HEMIP s,
lii: and Improvement Project

e CTWN modeling sensitivity (Global Gridded Crop
Modeling Initiative phase 2)

« Communication, science/policy interaction

- understand challenges for adaptation by
practitioners, farmers...etc.

e.g. Adaptation Futures conference in Rotterdam,

May 10-13 (A ADAPTATION
\S2) FUTURES 2016

practices and solutions
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